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Summary

Glioblastomas' significant heterogeneity complicates diagnosis in an era of increasing reliance on 
genotyping, as traditional biopsies may provide an incomplete genetic snapshot of the tumour. This 
same complexity also limits the effectiveness of targeted therapies. In contrast, broad-acting agents, 
such as the locally delivered SI-053, offer a more generalised approach. By targeting the fundamental 
process of DNA replication, SI-053 is designed to suppress growth across diverse tumour subvariants, 
overcoming limitations posed by genetic heterogeneity and the blood-brain barrier.
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Background

Glioblastomas exhibit significant intra-patient heterogeneity, both spatially and temporally. Distinct 
regions within the same tumour can harbour divergent genetic and transcriptional profiles, which may 
further evolve over time. Single-biopsy sampling may fail to capture key subclonal driver mutations, 
resulting in false-negative findings when such alterations are confined to localised tumour regions1–7.

Historically, diagnosis relied predominantly on histological and morphological features such as 
necrosis, mitotic activity, and microvascular proliferation, which is now increasingly informed by 
molecular markers including IDH mutation status, 1p/19q codeletion, TERT promoter mutations, 
EGFR amplification, and methylation profiling8–14.

Most glioblastoma-associated mutations remain undruggable, and clinical trials targeting these alter-
ations have thus far failed to yield significant improvements in survival15. SI-053's active compound, 
Temozolomide, is a potent alkylating cytostatic agent which targets the fundamental process of DNA 
replication. Its anti-proliferative effect is not limited to specific genetic contexts, offering a general-
ised, genotype-independent mechanism of action which broadly suppresses tumour proliferation. 
Furthermore, the intracranial administration of SI-053 circumvents the challenges posed by the 
blood–brain barrier, enabling more direct and effective delivery to tumour tissue compared to system-
ically administered therapies16.

Challenges of Tumour Heterogeneity and Emerging Solutions

Even within this molecular era, transcriptional subtypes often correlate with histomorphological 
patterns. Morphology remains a powerful phenotypic readout that can help prioritise molecular 
testing and reveal critical "morpho-molecular" correlates. This phenotypic heterogeneity is so 
pronounced that glioblastoma was historically termed glioblastoma multiforme (GBM)17. Still, many 
histological transitions between tumour regions are subtle, difficult to standardise across observers, 
and do not reliably map to distinct biological programs18.

To better capture the full spectrum of intra-tumoral variation, modern single-cell and spatial profiling 
technologies have been introduced. These include single-cell RNA sequencing, spatial transcriptom-
ics, imaging mass cytometry, and others that allow high-resolution dissection of glioma biology. At a 
more accessible level, multiregional sampling has emerged as a practical strategy to improve diagnos-
tic accuracy. Numerous studies have shown that key genetic and transcriptional events may be 
confined to specific tumour coordinates or microenvironments19, 20. For example, Liu et al. demon-
strated that multisampling workflows significantly outperformed single-sample approaches in captur-
ing intra-tumoral heterogeneity, detecting more than twice as many cancer cell subpopulations21.

Despite these advances, limitations remain. Sampling approaches are still poorly standardised and 
often lack region-specific guidance. More refined strategies, such as radiologically guided sampling 
or microscopic feature-guided laser capture microdissection, can help, but they are difficult to scale 
or incorporate into routine clinical workflows due to time, cost, and inter-observer subjectivity22.

One key concern is the representativeness of biopsies. Core biopsies often reflect only a narrow spati-
otemporal snapshot of the tumour and may not capture its clonal diversity. Larger samples, while 
seemingly more comprehensive, may intermingle anatomically distinct subregions, obscuring mean-
ingful patterns of functional heterogeneity23, 24.
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